Shanghai FO-LINK Technology Co., Ltd

Favorite  |  Set Home
OTDR (Optical time-domain reflectometer ) and its application
An optical time-domain reflectometer (OTDR) is an optoelectronic instrument used to characterize an optical fiber. An OTDR injects a series of optical pulses into the fiber under test. It also extracts, from the same end of the fiber, light that is scattered (Rayleigh backscatter) or reflected back from points along the fiber. (This is equivalent to the way that an electronic time-domain reflectometer measures reflections caused by changes in the impedance of the cable under test.) The strength of the return pulses is measured and integrated as a function of time, and is plotted as a function of fiber length.

An OTDR may be used for estimating the fiber length and overall attenuation, including splice and mated-connector losses. It may also be used to locate faults, such as breaks, and to measure optical return loss. To measure the attenuation of multiple fibers, it is advisable to test from each end and then average the results, however this considerable extra work is contrary to the common claim that testing can be performed from only one end of the fiber.
In addition to required specialized optics and electronics, OTDRs have significant computing ability and a graphical display, so they may provide significant test automation. However, proper instrument operation and interpretation of an OTDR trace still requires special technical training and experience.
OTDRs are also commonly used for fault finding on installed systems. In this case, reference to the installation OTDR trace is very useful, to determine where changes have occurred. Use of an OTDR for fault finding may require an experienced operator who is able to correctly judge the appropriate instrument settings to locate a problem accurately. This is particularly so in cases involving long distance, closely spaced splices or connectors, or PONs.
OTDRs are available with a variety of fiber types and wavelengths, to match common applications. In general, OTDR testing at longer wavelengths, such as 1550 nm or 1625 nm, can be used to identify fiber attenuation caused by fiber problems, as opposed to the more common splice or connector losses.
A longer laser pulse improves dynamic range and attenuation measurement resolution at the expense of distance resolution. For example, using a long pulse length, it may possible to measure attenuation over a distance of more than 100 km, however in this case an optical event may appear to be over 1 km long. This scenario is useful for overall characterisation of a link, but would be of much less use when trying to locate faults. A short pulse length will improve distance resolution of optical events, but will also reduce measuring range and attenuation measurement resolution. The "apparent measurement length" of an optical event is referred to as the "dead zone". The theoretical interaction of pulse width and dead zone can be summarised as follows:

Pulse length

Event dead zone

1 nsec

0.15 m (theoretically)

10 nsec

1.5 m (theoretically)

100 nsec  

15 m

1 µsec

150 m

10 µsec

1.5 km

100 µsec

15 km